

scikit-query : active query strategies for constrained clustering

Clustering aims to group data into clusters without the help of labels, unlike classification algorithms.
A well-known shortcoming of clustering algorithms is that they rely on an objective function geared toward
specific types of clusters (convex, dense, well-separated), and hyperparameters that are hard to tune.
Semi-supervised clustering mitigates these problems by injecting background knowledge in order to guide the clustering.
Active clustering algorithms analyze the data to select interesting points to ask the user about, generating constraints
that allow fast convergence towards a user-specified partition.

scikit-query is a library of active query strategies for constrained clustering inspired by scikit-learn
and the now inactive active-semi-supervised-clustering library by Jakub Švehla.

It is focused on algorithm-agnostic query strategies,
i.e. methods that do not rely on a particular clustering algorithm.
From an input dataset, they produce a set of constraints by making insightful queries to an oracle.
A variant for incremental constrained clustering is provided for applicable algorithms,
taking a data partition into account.

Note

This project is under active development.

General information

	The basics of scikit-query

	Constraints in clustering

API documentation

	Pairwise constraint selection (skquery.pairwise)

	Triplet constraint selection (skquery.triplet)

	Oracles (skquery.oracle)

	Informative subset selection (skquery.select)

	Custom exceptions

Footnotes

The basics of scikit-query

This page explains how to install the library and use it in Python.

Installation

The library can be installed using pip :

pip install scikit-query

Using the library

The library has modules for each kind of constraint (pairwise or triplet),
plus another one containing the oracles.
They can be imported as below :

from skquery.pairwise import *
from skquery.triplet import *
from skquery.oracle import MLCLOracle

This will allow to use the constraint selection algorithms as well
as the MLCLOracle to answer queries about pairwise constraints.

Making queries

All algorithms have a fit method taking as arguments
a matrix of n points having m features and an oracle (typically from the skquery.oracle module).
The oracle must have a query method returning a boolean.

qs = AIPC()
oracle = MLCLOracle()
constraints = qs.fit(dataset.data, oracle)

The oracle’s truth attribute can support a ground truth labeling of the data,
which will be used to automatically answer queries.
If none is provided, it will ask queries to the user through the CLI.

oracle = MLCLOracle(truth=labels)

The constraints are returned as a dictionary of constraint types paired
with lists of selected constraints.
The table below describes how the constraint dictionary is structured.

Conventions used for constraint storage

	Type

	Key

	Constraint format

	Must-link

	ml

	(int, int)

	Cannot-link

	cl

	(int, int)

	Triplet

	triplet

	(int, int, int)

Footnotes

Constraints in clustering

Constrained clustering aims to integrate user knowledge of the data to produce
partitions that better fit its expectations. This knowledge is expressed as relations involving
the cluster labels of particular points or subsets of the data, named constraints.
In the following, we note y_x the cluster label of a point x belonging to the dataset.

The constraints selected by the algorithms of this library are described below.

Pairwise constraints

Must-link and cannot-link (ML/CL) constraints, also referred to as pairwise constraints,
establish a relation between two data points : they must be in the same cluster (must-link)
or in separate clusters (cannot-link). Thanks to their simplicity and the fact that many complex
constraints can be decomposed into a set of ML/CL constraints, they are most widely studied constraints ;
most active clustering algorithms focus on selecting them efficiently.

Formally, they are expressed as an (in)equality between cluster labels :

\[\begin{split}y_i = y_j \quad (ML)\\
y_i \neq y_j \quad (CL)\\\end{split}\]

Querying a pairwise constraint between two points i and j is simply asking :
“Should i” and *j be in the same cluster ?”. If the user answers “yes”, then (i,j) is a
must-link constraint. If they answer “no”, it is a cannot-link constraint.

Triplet constraints

Triplet constraints, sometimes called relative constraints, define the relationship between
three data points : a reference point a, a positive point p and a negative point n.
The positive point p is assumed to be more similar to a than n is. Formally, it is expressed as follows:

\[\begin{split}y_a = y_n \implies y_a = y_p \\
y_a \neq y_p \implies y_a \neq y_n\end{split}\]

Querying a triplet constraint (i,j,k) amounts to asking the user : “Is i more similar to j than to k ?”
The answer to the query will determine the roles of j and k in the constraint. Indeed, “no”
would mean that j corresponds to the negative point n, and k corresponds to p, while “yes”
would mean the reverse.

Footnotes

Pairwise constraint selection (skquery.pairwise)

This module regroups methods that query pairwise (i.e. must-link/cannot-link) constraints.

Footnotes

Triplet constraint selection (skquery.triplet)

This module regroups methods that query triplet constraints.

Footnotes

Oracles (skquery.oracle)

This module contains simple oracles that answer the queries made by active clustering algorithms.
They can be used either for direct interaction with a user, or for producing automated answers
based on a labeling of the data.

	
class skquery.oracle.MLCLOracle(budget=10, truth=None)

	Oracle for pairwise queries.

Parameters

	budgetint, default=10
	Maximum number of queries the oracle will answer.

	trutharray-like, default=None
	Ground truth labeling that emulates a human oracle.

Attributes

	queriesint
	Number of queries answered by the oracle so far.

	budgetint
	Maximum number of queries the oracle will answer.

	trutharray-like, default=None
	Ground truth labeling that emulates a human oracle.

	
query(i, j)

	Query the oracle to find out whether two points should be in the same cluster.

Parameters

	iint
	Index of first data point.

	jint
	Index of second data point.

Returns

	answerbool
	Answer to the query.

Raises

	NoAnswerError
	If the oracle doesn’t give an answer, i.e. they don’t know what to answer.

	
class skquery.oracle.TripletOracle(budget=10, truth=None)

	Oracle for triplet queries. Inspired from the formalization in [1].

Parameters

	budgetint, default=10
	Maximum number of queries the oracle will answer.

	trutharray-like, default=None
	Ground truth labeling that emulates a human oracle.

Attributes

	queriesint
	Number of queries answered by the oracle so far.

	budgetint
	Maximum number of queries the oracle will answer.

	trutharray-like, default=None
	Ground truth labeling that emulates a human oracle.

References

[1] Xiong, S., Pei, Y., Rosales, R., Fern, X. Z. Active Learning from Relative Comparisons,
IEEE Transactions on Knowledge and Data Engineering, vol. 27, nᵒ 12, p. 3166‑3175, dec. 2015,
doi: 10.1109/TKDE.2015.2462365.

	
query(i, j, k)

	Query the oracle on the relation between a triplet of points.

Parameters

	iint
	Index of first data point, the reference.

	jint
	Index of second data point, the assumed positive example.

	kint
	Index of third data point, the assumed negative example.

Returns

	answerbool
	Answer to the query.

Raises

	NoAnswerError
	If the oracle doesn’t give an answer, i.e. they don’t know what to answer.

Footnotes

Informative subset selection (skquery.select)

This module regroups preprocessing methods to select informative subsets of a dataset
on which query strategies can be applied.

Footnotes

Custom exceptions

	
exception skquery.exceptions.EmptyBudgetError

	Exception to be raised when the number of queries made by an active method has reached the budget limit.

	
exception skquery.exceptions.NoAnswerError

	Exception to be raised when the oracle doesn’t answer a query, e.g. when they don’t know what to answer.

	
exception skquery.exceptions.QueryNotFoundError

	Exception to be raised when an active method is unable to perform further queries, e.g. when all points in the dataset have been selected for query.

Footnotes

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 skquery	

 	
 	
 skquery.exceptions	

 	
 	
 skquery.oracle	

Index

 E
 | M
 | N
 | Q
 | S
 | T

E

 	
 	EmptyBudgetError

M

 	
 	MLCLOracle (class in skquery.oracle)

 	
 module

 	skquery.exceptions

 	skquery.oracle

N

 	
 	NoAnswerError

Q

 	
 	query() (skquery.oracle.MLCLOracle method)

 	(skquery.oracle.TripletOracle method)

 	
 	QueryNotFoundError

S

 	
 	
 skquery.exceptions

 	module

 	
 	
 skquery.oracle

 	module

T

 	
 	TripletOracle (class in skquery.oracle)

 Footnotes

 nav.xhtml

 Table of Contents

 		
 scikit-query : active query strategies for constrained clustering

 		
 The basics of scikit-query

 		
 Installation

 		
 Using the library

 		
 Making queries

 		
 Constraints in clustering

 		
 Pairwise constraints

 		
 Triplet constraints

 		
 Pairwise constraint selection (skquery.pairwise)

 		
 Triplet constraint selection (skquery.triplet)

 		
 Oracles (skquery.oracle)

 		
 MLCLOracle

 		
 MLCLOracle.query()

 		
 TripletOracle

 		
 TripletOracle.query()

 		
 Informative subset selection (skquery.select)

 		
 Custom exceptions

 		
 EmptyBudgetError

 		
 NoAnswerError

 		
 QueryNotFoundError

_static/file.png

_static/minus.png

_static/plus.png

